Genus 3 L-functions in average polynomial-time

Andrew V. Sutherland
Massachusetts Institute of Technology

March 28, 2017

Joint work with D. Harvey

L-functions and zeta functions

Given a smooth projective geometrically integral curve X / \mathbb{Q} of genus g we wish to compute its L-function

$$
L(X, s):=\sum_{n \geq 1} a_{n} n^{-s}=\prod_{p} L_{p}\left(p^{-s}\right)^{-1},
$$

where $L_{p} \in \mathbb{Z}[T]$ has degree at most $2 g$. At primes p of good reduction the polynomial $L_{p}(T)$ is the numerator of the zeta function

$$
Z\left(X_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} \# X_{p}\left(\mathbb{F}_{p^{k}}\right) T^{k} / k\right)=\frac{L_{p}(T)}{(1-T)(1-p T)}
$$

Ignoring bad primes, computing $L(X, s) \approx \sum_{n \leq N} a_{n} n^{-s}$ boils down to:
Given N, compute $L_{p}(T)$ for all good primes $p \leq N$.
In fact, for $p>\sqrt{N}$ we only need to know the trace of $L_{p}(T)$.

Algorithms to compute zeta functions

Given a curve C / \mathbb{Q} of genus g, we want to compute the normalized L-polynomials $\bar{L}_{p}(T)$ at all good primes $p \leq N$.
complexity per prime
(ignoring factors of $O(\log \log p)$)

algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3}(\log p)^{2}$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p \log p$
p-adic cohomology	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$
CRT (Schoof-Pila)	$(\log p)^{5}$	$(\log p)^{8}$	$(\log p p)^{12 ?}$
average poly-time	$(\log p)^{4}$	$(\log p)^{4}$	$(\log p)^{4}$

Genus 3 curves

The canonical embedding of a genus 3 curve into \mathbb{P}^{2} is either
(1) a degree-2 cover of a smooth conic (hyperelliptic case);
(2) a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014];
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

Here we will focus on the second case.
Prior work has all been based on p-adic cohomology:
[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

New algorithm

Let C_{p} / \mathbb{F}_{p} be a smooth plane quartic defined by $f(x, y, z)=0$. For $n \geq 0$ let $f_{i, j, k}^{n}$ denote the coefficient of $x^{i} y^{j} z^{k}$ in f^{n}.

The Hasse-Witt matrix of C_{p} is the 3×3 matrix

$$
W_{p}:=\left[\begin{array}{lll}
f_{p-1, p-1,2 p-2}^{p-1} & f_{2 p}^{p-1} & f_{p-1, p-1, p-2}^{p-1} \\
f_{p-1,2 p-1, p-2}^{p-1} \\
f_{p-2, p-1,2 p-1}^{p-1} & f_{2 p}^{p-1, p-1, p-1} & f_{p-2,2 p-1, p-1}^{p-1} \\
f_{p-1, p-2,2 p-1}^{p-1} & f_{2 p-1, p-2, p-1}^{p-1} & f_{p-1,2 p-2, p-1}^{p-1}
\end{array}\right] .
$$

This is the matrix of the p-power Frobenius acting on $H^{1}\left(C_{p}, \mathcal{O}_{C_{p}}\right)$ (and the Cartier-Manin operator acting on the space of regular differentials). As proved by Manin, we have

$$
L_{p}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

Our strategy is to compute W_{p} then lift $L_{p}(T)$ from $(\mathbb{Z} / p \mathbb{Z})[T]$ to $\mathbb{Z}[T]$.

Target coefficients of f^{p-1} for $p=7$:

Coefficient relations

Let $\partial_{x}=x \frac{\partial}{\partial x}$ (degree-preserving). The relations

$$
f^{p-1}=f \cdot f^{p-2} \quad \text { and } \quad \partial_{x} f^{p-1}=-\left(\partial_{x} f\right) f^{p-2}
$$

yield the relation

$$
\sum_{\iota+\jmath+\kappa=4}(i+\iota) f_{\iota, b, \kappa} f_{i-\iota, j-\jmath, k-\kappa}^{p-2}=0
$$

among nearby coefficients of f^{p-2} (a triangle of side length 5).
Replacing ∂_{x} by ∂_{y} yields a similar relation (replace $i+\iota$ with $j+j$).

Coefficient triangle

For $p=7$ with $i=12, j=5, k=7$ the related coefficients of f^{p-2} are:

Moving the triangle

Now consider a bigger triangle with side length 7 .
Our relations allow us to move the triangle around:

An initial "triangle" at the edge can be efficiently computed using coefficients of $f(x, 0, z)^{p-2}$.

Computing one Hasse-Witt matrix

Nondegeneracy: we need $f(1,0,0), f(0,1,0), f(0,0,1)$ nonzero and $f(0, y, z), f(x, 0, z), f(x, y, 0)$ squarefree (easily achieved for large p).

The basic strategy to compute W_{p} is as follows:

- There is a 28×28 matrix M_{j} that shifts our 7-triangle from y-coordinate j to $j+1$; its coefficients depend on j and f. In fact a 16×16 matrix M_{i} suffices (use smoothness of C).
- Applying the product $M_{0} \cdots M_{p-2}$ to an initial triangle on the edge and applying a final adjustment to shift from f^{p-2} to f^{p-1} gets us one column of the Hasse-Witt matrix W_{p}.
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of W_{p}.

We have thus reduced the problem to computing $M_{1} \cdots M_{p-2} \bmod p$.

An average polynomial-time algorithm

Now let C / \mathbb{Q} be smooth plane quartic $f(x, y, z)=0$ with $f \in \mathbb{Z}[x, y, z]$. We want to compute W_{p} for all good $p \leq N$.

Key idea

The matrices M_{j} do not depend on p; view them as integer matrices. It suffices to compute $M_{0} \cdots M_{p-2} \bmod p$ for all $\operatorname{good} p \leq N$.

Using an accumulating remainder tree we can compute all of these partial products in time $O\left(N(\log N)^{3+o(1)}\right)$.

This yields an average time of $O\left((\log p)^{4+o(1)}\right)$ per prime to compute the W_{p} for all good $p \leq N$.*

> *We may need to skip $O(1)$ primes p where C_{p} is degenerate; these can be handled separately using an $\tilde{O}\left(p^{1 / 2}\right)$ algorithm based on the same ideas.

Accumulating remainder tree

Given matrices M_{0}, \ldots, M_{n-1} and moduli m_{1}, \ldots, m_{n}, to compute

$$
\begin{array}{r}
M_{0} \bmod m_{1} \\
M_{0} M_{1} \bmod m_{2} \\
M_{0} M_{1} M_{2} \bmod m_{3} \\
M_{0} M_{1} M_{2} M_{3} \bmod m_{4} \\
\cdots \\
M_{0} M_{1} \cdots M_{n-2} M_{n-1} \bmod m_{n}
\end{array}
$$

multiply adjacent pairs and recursively compute

$$
\begin{array}{r}
\left(M_{0} M_{1}\right) \bmod m_{2} m_{3} \\
\left(M_{0} M_{1}\right)\left(M_{2} M_{3}\right) \bmod m_{4} m_{5} \\
\ldots \\
\left(M_{0} M_{1}\right) \cdots\left(M_{n-2} M_{n-1}\right) \bmod m_{n-1} m_{n}
\end{array}
$$

and adjust the results as required.

Timings for genus 3 curves

N	non-hyperelliptic		hyperelliptic	
	costa-AKR	avgpoly	harvey-K	avgpoly
2^{12}	18.2	1.1	1.6	0.1
2^{13}	49.1	2.6	3.3	0.2
2^{14}	142	5.8	7.2	0.5
2^{15}	475	13.6	16.3	1.5
2^{16}	1,670	30.6	39.1	4.6
2^{17}	5,880	70.9	98.3	12.6
2^{18}	22,300	158	255	25.9
2^{19}	78,100	344	695	62.1
2^{20}	297,000	760	1,950	147
2^{21}	1,130,000	1,710	5,600	347
2^{22}	4,280,000	3,980	16,700	878
$2{ }^{23}$	16,800,000	8,580	51,200	1,950
2^{24}	66,800,000	18,600	158,000	4,500
$2{ }^{25}$	244,000,000	40,800	501,000	10,700
2^{26}	972,000,000	91,000	1,480,000	24,300

(Intel Xeon E7-8867v3 2.5 GHz CPU seconds).

